Structural Decomposition Analysis of Pollution Terms of Trade

Yan Xu & Erik Dietzenbacher
Faculty of Economic and Business
University of Groningen
Outline

• Introduction
• Methodology
• Results
• Conclusions
Introduction

Pollution Terms of Trade = Pollution Embodied in Exports / Pollution Embodied in Imports (Antweiler, 1996)

Factors:
- Emission Intensity: per output emission
- Production Technology: A matrix
- Final Demand: F matrix

Note: we also distinguish between factors related to the domestic country and factors related to foreign countries.
Motivation

Changes in Pollution embodied in trade
All over the world:
\[\Delta \text{PEE} = \Delta \text{PEM} \]

But in a specific country:
how \(\Delta \text{PEE} \) & \(\Delta \text{PEM} \) and why (Many previous studies)

We found in 32 countries both PEE and PEM increased (1995-2009)
Relative change:
\[\frac{\text{PEE}_t}{\text{PEE}_{t-1}} \text{?} \frac{\text{PEM}_t}{\text{PEM}_{t-1}} \]
→ change in PTT
\[\frac{\text{PTT}_t}{\text{PTT}_{t-1}} \text{?} \frac{\text{PEE}_{t-1}}{\text{PEM}_{t-1}} / \frac{\text{PEE}_t}{\text{PEM}_t} \]
→ which factor make changes in PEE larger (smaller) than changes in PEM?
Motivation

International trade changes \rightarrow change in Pollution embodied in trade

All over the world:

$$\frac{\Delta \text{PEE}}{} = \frac{\Delta \text{PEM}}{}$$

But in a specific country:

how ΔPEE & ΔPEM and why (Many previous studies…)

We found in 8 countries PEE ↓ and PEM ↑ (1995-2009)

Relative change:

$$\frac{\text{PEEt}}{} / \frac{\text{PEE}_{t-1}}{} / \frac{\text{PEMt}}{} / \frac{\text{PEM}_{t-1}}{} < 1$$

\Rightarrow which factor leads to $\frac{\text{PTTt}}{} / \frac{\text{PTT}_{t-1}}{} < 1$?
Motivation

For example: from 1995 to 2009

Absolute changes (in ton):

<table>
<thead>
<tr>
<th></th>
<th>ΔPEE</th>
<th>ΔPEM</th>
<th>diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>+1,510,720</td>
<td>+648,606</td>
<td>862,114</td>
</tr>
<tr>
<td>Greece</td>
<td>+25,906</td>
<td>+29,527</td>
<td>-3,621</td>
</tr>
</tbody>
</table>
Motivation

For example:

<table>
<thead>
<tr>
<th></th>
<th>\trianglePEE</th>
<th>\trianglePEM</th>
<th>diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>+1,510,720</td>
<td>+648,606</td>
<td>862,114\text{ } \rightarrow \text{larger in PEE}</td>
</tr>
<tr>
<td>Greece</td>
<td>+25,906</td>
<td>+29,527</td>
<td>-3,621 \text{ } \rightarrow \text{larger in PEM}</td>
</tr>
</tbody>
</table>
Motivation

For example:

Absolute changes:

<table>
<thead>
<tr>
<th></th>
<th>ΔPEE</th>
<th>ΔPEM</th>
<th>diff</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>+1,510,720</td>
<td>+648,606</td>
<td>862,114</td>
<td>\rightarrow larger in PEE</td>
</tr>
<tr>
<td>Greece</td>
<td>+25,906</td>
<td>+29,527</td>
<td>-3,621</td>
<td>\rightarrow larger in PEM</td>
</tr>
</tbody>
</table>

Relative changes:

<table>
<thead>
<tr>
<th></th>
<th>PEE${09}$/PEE${95}$</th>
<th>PEM${09}$/PEM${95}$</th>
<th>PTT${09}$/PTT${95}$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>3.52</td>
<td>7.03</td>
<td>0.5</td>
<td>\rightarrow larger in PEM</td>
</tr>
<tr>
<td>Greece</td>
<td>3.23</td>
<td>2.15</td>
<td>1.5</td>
<td>\rightarrow larger in PEE</td>
</tr>
</tbody>
</table>
Central question in this paper:

- How changes in these factors affect Pollution Terms of Trade
- To what extent do factors’ effects differ between Pollution Embodied in Exports and Pollution Embodied in Imports

Note:
Relative Effects & Absolute Effects
Answers of both question could give us information on emissions embodied in the international trade.
Data

Analytical WIOTs in current prices (1995-2009)
Analytical WIOTs in previous year’s prices (1996-2009)

35 sectors
40 countries + Rest of the World (Analytical WIOTs)
Methodology

Three Factors:

- emission intensity W : total CO$_2$/total output for each sector
- production technology A
- final demand F

change from 1995 to 2009 affect PEE, PEM, PTT
Methodology

Three Factors:

- Emission intensity W : total CO2/total output
- Production technology A:
 - H technology

\[
H^r = \sum_{s=1}^{N} A^{sr}
\]

\[
H^1 = A^{11} + A^{21} + A^{31}
\]
Methodology

Three Factors:

emission intensity W : total CO$_2$/total output

production technology A:

\rightarrow H technology

$H^r = \sum_{s=1}^{N} A^{sr}$

\rightarrow T trade

$t_{ij}^{sr} = a_{ij}^{sr} / h_{ij}^r$

$H^1 = A^{11} + A^{21} + A^{31}$

$T^{11} = A^{11} / H^1$
Methodology

Three Factors:

- Emission intensity W: total CO$_2$/total output
- Production technology A: $H \text{ technology}$
- Trade T: $t_{ij}^{sr} = a_{ij}^{sr} / h_{ij}^{r}$

Mathematical expressions:

$$H^r = \sum_{s=1}^{N} A_{sr} \Rightarrow H^r \text{ and } H^{-r}$$
Methodology

Three Factors:

emission intensity W : total CO$_2$/total output

production technology A:

\rightarrow H technology

$H^r = \sum_{s=1}^{N} A_{sr}^r \rightarrow H^r$ and H^r

\rightarrow T trade

$t_{ij}^{sr} = a_{ij}^{sr} / h_{ij}^{r} \rightarrow T^r$ and T^r
Methodology

Three Factors:

- Emission intensity W: total CO$_2$/total output
- Production technology A: \rightarrow H technology \rightarrow H^r and H^{-r}
- Trade T: \rightarrow T^r and T^{-r}
- Final demand F: \rightarrow q level

$q^r = \sum_{s=1}^{N} f^{sr}$
Methodology

Three Factors:

- Emission intensity W: total CO$_2$/total output
- Production technology A:
 - H technology
 - H^r and H^{-r}
- Trade T:
 - T^r and T^{-r}
- Final demand F:
 - q level
 - d trade

Mathematical expressions:

$$q^r = \sum_{s=1}^{N} f^{sr}$$

$$d_{j}^{sr} = f_{j}^{sr} / q_{j}^{r}$$

$$q^1 = f^{11} + f^{21} + f^{31}$$

$$d^{11} = f^{11} / q^1$$
Methodology

Three Factors:

emission intensity W : total CO$_2$/total output
production technology A:
 \rightarrow H technology
 \rightarrow H^r and H^{-r}

trade T:
 \rightarrow T^r and T^{-r}

final demand F:
 \rightarrow q level
 \rightarrow q^r and q^{-r}
 \rightarrow d trade
Methodology

Three Factors:

- **emission intensity** W : total CO2/total output
- **production technology** A: $\rightarrow H$ technology, $\rightarrow H^r$ and H^{-r}
- **trade** T: $\rightarrow T^r$ and T^{-r}
- **final demand** F: $\rightarrow q$ level, $\rightarrow q^r$ and q^{-r}
- **trade** d: $\rightarrow d^r$ and d^{-r}

\[
\begin{align*}
\sum_{s=1}^{N} f_{jsr}^{sr} & = \frac{q_{jr}^{sr}}{q_{jr}^{r}} \rightarrow d_{jr}^{sr} & \rightarrow d^r \text{ and } d^{-r}
\end{align*}
\]
Methodology

Three Factors:

- emission intensity W : total CO$_2$/total output
- production technology A: $\rightarrow H \text{ technology} \rightarrow H^r$ and H^{-r}
 $\rightarrow T \text{ trade} \rightarrow T^r$ and T^{-r}
- final demand F: $\rightarrow q \text{ level} \rightarrow q^r$ and q^{-r}
 $\rightarrow d \text{ trade} \rightarrow d^r$ and d^{-r}

PEE, PEM, and PTT: each year changes without price effects
Methodology

Each year changes (in ratios V_t/V_{t-1}) without price effects:

...

Obtain the two polar decomposition results, then take average.

$$\frac{V_t}{V_{t-1}} = \sqrt{\frac{V_t}{V_{t-1 \text{ polar} 1}} \times \frac{V_t}{V_{t-1 \text{ polar} 2}}}$$
Methodology

Each year changes (in ratios V_t/V_{t-1}) without price effects:

...

The total changes $= (V_{1996}/V_{1995}) \times (V_{1997}/V_{1996}) \times \ldots \times (V_{2009}/V_{2008})$
$= V_{2009}/V_{1995}$
Figure 1: Ratios of PEE (PEM) in 2009 to PEE (PEM) in 1995
Figure 1: Ratios of PEE (PEM) in 2009 to PEE (PEM) in 1995
Results, total changes

Figure 2: Ratios of PTT in 2009 to PTT in 1995
Results, total changes

Figure 2: Ratios of PTT in 2009 to PTT in 1995

<table>
<thead>
<tr>
<th></th>
<th>PEE</th>
<th>PEM</th>
<th>PTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Romania</td>
<td>32+ 8-</td>
<td>+</td>
<td>11+ 29-</td>
</tr>
<tr>
<td>Poland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovak Republic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>India</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latvia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithuania</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RoW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luxembourg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyprus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taiwan</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: R_9509
Results, emission intensity

Figure 3: Emission Intensity Effects on PEE and PEM
significantly negatively correlated, with the correlation coefficient -0.35 and p-value 0.025.
Results, emission intensity

Figure 4: Emission Intensity Effects on PTT
Results, emission intensity

Figure 4: Emission Intensity Effects on PTT
Results, production technology

Production technology → PEM (all) & PEE (in 26 countries) increase

Fragmentation in intermediate products increase PEM:

• imported intermediates/total inputs in each sector each country
• compare year 1995 and 2009
• the average ratio in 1995 is 0.2245
• the average ratio in 2009 is 0.2443 → increased 0.02 or 9%
• weighted average ratio in 1995 is 0.1294
• weighted average ratio in 2009 is 0.1598 → increased 0.03 or 19%
Final demand \rightarrow PEE & PEM increase

Fragmentation in final demand increase PEE and PEM:

- imported final demand/total final
- compare year 1995 and 2009
- the average ratio in 1995 is 0.1284
- the average ratio in 2009 is 0.1387 \rightarrow increased 0.01 or 8%
- weighted average ratio in 1995 is 0.0736
- weighted average ratio in 2009 is 0.0870 \rightarrow increased 0.013 or 18%
Results, PEE and PEM

- Improvement in emission intensity → PEE and PEM decrease
- Final demand → PEE and PEM increase
 - final demand effect partly offset by efficiency effect
Results, PEE and PEM

- Improvement in emission intensity → PEE and PEM decrease
- Final demand → PEE and PEM increase
 - final demand effect partly offset by efficiency effect
- Production technology → PEM increase, PEE
Results, PEE and PEM

Improvement in emission intensity → PEE and PEM decrease
Final demand → PEE and PEM increase
 final demand effect partly offset by efficiency effect
Production technology → PEM increase, PEE

Large positive effects from
 overall level of final demand q → q^r on PEM and q^{-r} on PEE
Results, PEE and PEM

Improvement in emission intensity \rightarrow PEE and PEM decrease
Final demand \rightarrow PEE and PEM increase
 final demand effect partly offset by efficiency effect
Production technology \rightarrow PEM increase, PEE

Large positive effects from
 overall level of final demand $q \rightarrow q^r$ on PEM and q^{-r} on PEE

Special case:
Production technology \rightarrow 14 countries’ PEE smaller
Results, PEE and PEM

- Improvement in emission intensity \rightarrow PEE and PEM decrease
- Final demand \rightarrow PEE and PEM increase
 - final demand effect partly offset by efficiency effect
- Production technology \rightarrow PEM increase, PEE

Large positive effects from
- overall level of final demand $q \rightarrow q^r$ on PEM and q^{-r} on PEE

Special case:
- Production technology \rightarrow 14 countries’ PEE smaller

Eastern European countries: Estonia, Romania, Slovak Republic, Hungary, and Lithuania
Results, PEE and PEM

Improvement in emission intensity → PEE and PEM decrease
Final demand → PEE and PEM increase
 final demand effect partly offset by efficiency effect
Production technology → PEM increase, PEE

Large positive effects from
 overall level of final demand $q → q^r$ on PEM and q^{-r} on PEE

Special case:
China

 PEE ($V_{2009}/V_{1995} = 3.52$) → trade shifts in foreign countries (T^{-r}&d^{-r})
 PEM ($V_{2009}/V_{1995} = 7.03$) → increase in domestic final demand (q^r)
Results, PEE and PEM

Improvement in emission intensity → PEE and PEM decrease
Final demand → PEE and PEM increase
 final demand effect partly offset by efficiency effect
Production technology → PEM increase, PEE

Large positive effects from
 overall level of final demand q → q primer on PEM and q dash on PEE

Special case:
Japan
 level of domestic final demand (q primer) → decrease

PEM ($V_{2009}/V_{1995} = 0.90$)
Results, PEE and PEM

- Improvement in emission intensity → PEE and PEM decrease
- Final demand → PEE and PEM increase
 - Final demand effect partly offset by efficiency effect
- Production technology → PEM increase, PEE

Large positive effects from
- Overall level of final demand $q → q^r$ on PEM and q^{-r} on PEE

Special case:
- Indonesia
 - Efficiency is decreased → change in emission intensity
 PEE ($V_{2009}/V_{1995} = 1.07$)
Results, PEE and PEM

Improvement in emission intensity → PEE and PEM decrease
Final demand → PEE and PEM increase
 final demand effect partly offset by efficiency effect
Production technology → PEM increase, PEE

Large positive effects from
 overall level of final demand $q → q_r$ on PEM and q^{-r} on PEE

Special case:
Indonesia
 efficiency is decreased → change in emission intensity
 PEE ($V_{2009}/V_{1995} = 1.07$)
 emission intensity increased by more than 100% in 8 sectors:
 Textiles, Machinery, Electrical Equipment, Transport Equipment, Manufacturing
Conclusions, PTT

Improvement in emission intensity → PEE and PEM decrease
→ about ½ of countries’ PTT increase
Conclusions, PTT

Improvement in emission intensity → PEE and PEM decrease
→ about ½ of countries’ PTT increase

Final demand
→ PEE and PEM increase
→ effects on PEM are larger in 5/8 countries
→ 5/8 countries’ PTT decrease
Conclusions, PTT

Improvement in emission intensity → PEE and PEM decrease
 → about ½ of countries’ PTT increase

Final demand
 → PEE and PEM increase
 → effects on PEM are larger in 5/8 countries
 → 5/8 countries’ PTT decrease

Production technology
 → PEM increase, PEE
 → PTT decrease in 4/5 countries
Conclusions, PTT

Improvement in emission intensity → PEE and PEM decrease
 → about ½ of countries’ PTT increase

Final demand
 → PEE and PEM increase
 → effects on PEM are larger in 5/8 countries
 → 5/8 countries’ PTT decrease

Production technology
 → PEM increase, PEE
 → PTT decrease in 4/5 countries

Subcategories:
 \(d^r \) and \(q^r \) → PEM increase, no effect PEE → PTT decrease
 \(T^r \) and \(H^r \) → PEM increase → PTT decrease
Conclusions, PTT

Improvement in emission intensity → PEE and PEM decrease
→ about ½ of countries’ PTT increase

Final demand
→ PEE and PEM increase
→ effects on PEM are larger in 5/8 countries
→ 5/8 countries’ PTT decrease

Production technology
→ PEM increase, PEE
→ PTT decrease in 4/5 countries

Special case:
Romania’s PTT decreased by 73%
Conclusions, PTT

Improvement in emission intensity → PEE and PEM decrease
→ about ½ of countries’ PTT increase

Final demand
→ PEE and PEM increase
→ effects on PEM are larger in 5/8 countries
→ 5/8 countries’ PTT decrease

Production technology
→ PEM increase, PEE
→ PTT decrease in 4/5 countries

Special case:
Romania’s PTT decreased by 73%
→ PEE reduced by 50% (cleaner technology and smaller emission intensity in home country)
→ PEM increased by more than 200% (higher level of domestic final demand)
Thank you for your attention!

yan.xu@rug.nl
Results, production technology

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>H</th>
<th>Tr</th>
<th>T-r</th>
<th>Hr</th>
<th>H-r</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEE</td>
<td>26+ 14-</td>
<td>29+ 11-</td>
<td>24+ 16-</td>
<td>15+ 25-</td>
<td>30+ 10-</td>
<td>18+ 22-</td>
<td>34+ 6-</td>
<td>32+ 8-</td>
</tr>
<tr>
<td>PEM</td>
<td>+</td>
<td>36+ 4-</td>
<td>38+ 2-</td>
<td>34+ 6-</td>
<td>+</td>
<td>37+ 3-</td>
<td>32+ 8-</td>
<td>+</td>
</tr>
<tr>
<td>PTT</td>
<td>8+ 32-</td>
<td>16+ 24-</td>
<td>7+ 33-</td>
<td>5+ 35-</td>
<td>27+ 13-</td>
<td>3+ 37-</td>
<td>27+ 17-</td>
<td>11+ 29-</td>
</tr>
</tbody>
</table>

Total number of countries, \(n = 40\)
Results, final demand

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>d</th>
<th>q</th>
<th>dr</th>
<th>d-r</th>
<th>qr</th>
<th>q-r</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEE</td>
<td>+</td>
<td>30+</td>
<td>10-</td>
<td>+</td>
<td>no eff</td>
<td>30+</td>
<td>10-</td>
<td>no eff</td>
</tr>
<tr>
<td>PEM</td>
<td>+</td>
<td>38+</td>
<td>2-</td>
<td>+</td>
<td>35+</td>
<td>5-</td>
<td>30+</td>
<td>10-</td>
</tr>
<tr>
<td>PTT</td>
<td>15+</td>
<td>25-</td>
<td>19+</td>
<td>21-</td>
<td>5+</td>
<td>35-</td>
<td>31+</td>
<td>9-</td>
</tr>
</tbody>
</table>

Total number of countries, \(n = 40 \)