Measuring the Benefits of Global Liberalization with a Consistent Tariff Aggregator

by David Laborde (IFPRI), Will Martin (World Bank) and Dominique Van der Mensbrugghe (World Bank)
Overview

• Why we need to aggregate and why it’s a problem

• Theory

• Implementation

• Results
The reality

- Tariffs (and tariff equivalents) are highly diverse
 - Illustration the EU dairy sector

- Trade negotiations aimed to reduce tariff dispersion
 - Harmonizing formulas
The constraint

• Typically aggregate from 10,000 tariff lines to 20-25
 • Even largest databases, will have fewer than 40 traded sectors
 • Enormous waste of information

• Can we do better?
 • Yes we can
 • Yes we must
 • Have the theory and the data to do better
Caveats

- Tariff revenue?
 - Theoretical tariff revenue
 - Tariffs x Trade
 - Collected custom duties (but not customs revenue!)
 - Discrepancies:
 - Difference in trade… even in the sectoral value is right
 - Official tariff suspension/waivers
 - Unofficial tariff exemption (= corruption)
- What to do:
 - Focus on official tariffs (including preferences): it matters for trade negotiations
 - Discrepancies can be handle in the model but requires different modeling assumptions (marginal vs average collect efficiency)
How to aggregate

• Appropriate aggregator depends on the objective of aggregation
 • Weighted average tariff is *ad hoc*

• What possible objective function?
 • Expenditure
 • Tariff revenue
 • Mercantilist aggregator
 • Value of exports at world prices
National model

- Can characterize an economy using a *Balance of Trade* function

\[
B = e(p,u) - r(p,v) - z_p(p-p^w)
\]

- \(e(p,u)\) = Expenditure need to achieve utility \(u\)
- \(r(p,v)\) = Max revenue at price \(p\), with resources \(v\)
- \(z_p(p,u,v) = (e_p - r_p)(p-p^w)\) = Tariff revenues
Potential aggregators

- Expenditure aggregators
- Revenue (production) aggregators
- Tariff revenue aggregators
Expenditure (& qty) aggregators

- Assume imperfect substitution between different goods at tariff line or HS 6 category
 - For 2-stage budgeting, utility functions must be weakly separable & the sub-utility functions homothetic
 - But we assume this every time we use an aggregate
 - Then can write the expenditure function in terms of aggregated prices and quantities
- Within the group, expenditure increases with the tariff, but at a decreasing rate
 - Slope = e_p
Revenue aggregator

- Assume linear production possibility frontiers between varieties
 - No need to track production & trade of varieties
- In reality, conversion of apples into oranges on the supply side is not costless
 - May use a lower elasticity of substitution on the demand side to allow for this
- Or explicit modeling at a detailed level:
 - See Laborde and Gohin (2006) or Grant, Hertel and Rutherford (2008)
Tariff revenue aggregator

- Want a measure that takes account of the fact that increases in high tariffs reduce revenues by more than the quantity loss.

- Slope of the tariff revenue function:
 - \(e_p + (p-p^w) e_{pp} \)
 - Becomes negative for large enough tariff.
 - The “Laffer curve”
Diagrammatically

Exp, Rev

Fixed weight

Expenditure

Tariff Revenue

(p-p^w)=0

Price, (p-p^w)
Marginal impacts of a tariff reduction on expenditure and tariff revenue
Why aggregation matters: libn

• Within the group, a tariff cut reduces expenditure (good)
 • at the slope of the expenditure function, e_p
 • which determine quantities demanded, & terms-of-trade effects in a global model
• Tariff decline reduces revenue (bad)
 • at a rate given by the slope of the revenue function:
 • $e_p + (p - p^w) e_{pp}$
• Miss these within-group gains if we use the same aggregator for expenditure & revenue
Insights

- We need to capture changes in the price dispersion
 - True price index

- We need to capture the right “average” tariff
 - “trade” Weights are endogenous

- We aggregate over several dimensions:
 - Products
 - Exporters
 - Importers
To solve a global model

- **Walras’ law a problem at the global level**
 - Couldn’t solve as income didn’t equal expenditure
- **Jim Anderson distinguishes quantities at domestic \((u_i)\) & world prices \((x_i^*)\)**
 - \(u_i = x_i^*(1+\tau_i^R)/(1+\tau_i^e)\)
 - Which allows global adding up
 - \(u_i(1+\tau_i^e)p^w = x_i^*(1+\tau_i^R)p^w\)
Computing aggregates

- Compute the expenditure tariff aggregator y using a domestic price index

\[P = PCIF \star \left(\sum_i \alpha_i (1 + t_i)^{1-\sigma} \right)^{1/(1-\sigma)} \]

- So $\tau^e = \frac{P}{PCIF} - 1$
Tariff revenue aggregator

- Initial tariff
 \[\tau_0^R = \frac{\sum v_i^0 \times t_i^0}{\sum v_i^0} \]
 - Where \(v_i \) is the value of imports of \(i \)

- Final tariff
 \[\tau_1^R = \frac{\sum v_i^0 \left\{ \frac{1+t_i^0}{1+t_i^1} \right\}^\sigma}{\sum v_i^0 \left\{ \frac{1+t_i^0}{1+t_i^1} \right\}^\sigma} \times t_i^1 \]
Implementation

- Modify model to distinguish quantities at domestic and at world prices
- Calculate the expenditure and tariff revenue aggregators
- Simulate impacts of changes
Nesting structure

\[M(i, r, s) \]
\[M^1(i, r, n) \]
\[M^2(hs6, r, n) \]
\[x(hs6, m, n) \]
Parameter estimates needed

- Great uncertainty about the elasticity of substitution at the six-digit level.
- Averages:
 - Kee, Nicita & Olarreaga $\eta = 3.12$
 - Hummels & Klenow $\sigma_2 = 7.5$
 - Broda and Weinstein $\sigma_2 = 13$
- Consider $\sigma_1 = 2$ or 5 in this initial study
- We ignore effects of new varieties
Results: Global Libn, $bn (σ=2)

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>Aggregators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chile</td>
<td>2.2</td>
<td>2.1</td>
</tr>
<tr>
<td>Brazil</td>
<td>21.7</td>
<td>30.8</td>
</tr>
<tr>
<td>China</td>
<td>-21.4</td>
<td>-8.6</td>
</tr>
<tr>
<td>India</td>
<td>18.9</td>
<td>24.3</td>
</tr>
<tr>
<td>High inc ctries</td>
<td>384</td>
<td>484</td>
</tr>
<tr>
<td>Developing ctries</td>
<td>111</td>
<td>241</td>
</tr>
<tr>
<td>LAC</td>
<td>41</td>
<td>62</td>
</tr>
<tr>
<td>Sub Saharan Africa</td>
<td>13</td>
<td>30</td>
</tr>
<tr>
<td>EU 27</td>
<td>135</td>
<td>180</td>
</tr>
<tr>
<td>United States</td>
<td>48</td>
<td>54</td>
</tr>
<tr>
<td>Japan</td>
<td>52</td>
<td>65</td>
</tr>
<tr>
<td>World total</td>
<td>496</td>
<td>725</td>
</tr>
</tbody>
</table>
Sensitivity to elasticity: DDA

<table>
<thead>
<tr>
<th>Region</th>
<th>TW0</th>
<th>Sig=2</th>
<th>Sig=5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chile</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Brazil</td>
<td>4.2</td>
<td>4.7</td>
<td>6.0</td>
</tr>
<tr>
<td>China</td>
<td>5.7</td>
<td>8.9</td>
<td>13.9</td>
</tr>
<tr>
<td>India</td>
<td>2.5</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>High inc. ctries</td>
<td>71.3</td>
<td>90.7</td>
<td>117.6</td>
</tr>
<tr>
<td>Developing ctries</td>
<td>22.2</td>
<td>30.7</td>
<td>43.7</td>
</tr>
<tr>
<td>LAC</td>
<td>10.4</td>
<td>12.1</td>
<td>14.8</td>
</tr>
<tr>
<td>Sub Saharan Africa</td>
<td>0.1</td>
<td>0.6</td>
<td>1.5</td>
</tr>
<tr>
<td>EU 27</td>
<td>30</td>
<td>39</td>
<td>53</td>
</tr>
<tr>
<td>United States</td>
<td>19</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>Japan</td>
<td>6</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>World total</td>
<td>94</td>
<td>121</td>
<td>161</td>
</tr>
</tbody>
</table>
Conclusions

• Feasible to solve global models with efficient aggregators
 • Eliminates the need to throw away information
• Depending upon the elasticities, the impacts can be very substantial
 • 50% increase in global welfare gains with $\sigma=2$
• Serious need for estimates of this key elasticity
• This problem goes beyond tariffs